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Abstract

This paper provides a theoretical method for a hydroelastic vibration of a clamped circular plate partially in contact with
a liquid. It is assumed that the liquid is inviscid and incompressible while the thickness of the plate is small compared to the
plate radius, and the gravity effect on the system is neglected. The wet dynamic displacement of the plate is approximated
by combining the orthogonal modal functions of a dry circular plate with a clamped boundary condition. The liquid
displacement potential satisfying the boundary conditions is derived and the wet dynamic modal functions of the plate are
derived by using a compatibility requirement along the contacting surface between the plate and the liquid. The eigenvalue
equation for the system is obtained by using the Rayleigh—Ritz method in order to calculate the wet natural frequencies
and the mode shapes for the symmetric and the asymmetric modes. The proposed method is verified by observing a good
agreement with three-dimensional finite element analysis results. The effects of the liquid thickness and the liquid depth on
the natural frequencies are also discussed.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Free vibration of circular plates in contact with a liquid has been studied recently. Many studies on the
subject have been experimentally and theoretically carried out by many researchers such as Kwak [1], Kwak
and Kim [2], Chiba [3,4], Amabili and Pasqualini [5], Bauer [6], Amabili and Kwak [7,8], Amabili [9,10], Kwak
and Han [11], Cheung and Zhou [12], Jeong [13], Andrianov and Hermans [14], and Jeong and Kim [15].
However all these studies are limited to the case of a fully liquid-contacting circular plate. Circular plates
partially in contact with a liquid can be found in various engineering fields such as the compartments of
horizontal cylindrical fuel tanks, a circular disk of butterfly valves, and a circular sluice gate, etc. Nevertheless,
literature on a partially liquid contacting circular plate cannot be found.

This paper deals with the hydroelastic vibration of a partially liquid-contacting circular plate. Therefore, the
purpose of this paper is to develop a theoretical method for the dynamic behavior of a circular plate with a
partial wet surface. The circular plate is clamped along the edge of the plate by a rigid cylindrical vessel and
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one side of the plate is partially in contact with an ideal liquid. It is assumed that the liquid is inviscid and
incompressible while the plate thickness is small compared to the plate radius and the gravity effect on the
system is neglected. The natural frequencies of the liquid-coupled system are obtained by using the
Rayleigh—Ritz method, and they are verified by a three dimensional finite element analysis. The natural
frequencies are plotted as a function of the water thickness and as a function of the water level to estimate the
relative added mass effect of the liquid.

2. Theoretical background
2.1. Formulation for a circular plate

Fig. 1 represents a circular plate partially in contact with a liquid contained in a rigid cylindrical vessel,
where R, h, and d represent the radius, thickness of the circular plate, and the liquid depth, respectively. In the
theoretical formulation, the clamped plate with a partial wet surface is considered. The dynamic displacement
of the wet plate can be written as a combination of the dry modal functions for the plate and the harmonic
time function.

M K M K
w(r,0,0) =Y > Wy(r, 0) explionn) = > > Upyi(r)Spi(0) expliot), (1)
m=0 j=0 m=0 j=0
where the subscript m is the number of nodal diameters of the dry circular plate and the subscript j indicates
the number of nodal circles of the plate. The symbol “i”” in the equations is used to represent /—1 and o is the
natural frequency of the wet circular plate. In order to elucidate the mode shapes and natural frequencies of
the plate in contact with the liquid, the Rayleigh—Ritz method is introduced. Therefore, each wet mode shape
can be expanded in a series by using a finite number of an admissible functions U,,;(r), Sy;(0) (m =0,1,2,...,
M; j=0,1,2,...,K), and the appropriate unknown coefficients 4,,, g,,; and p,,;.

Umj(r) = Jm(imjr) + Amjlm(imj")a ()

Smi(0) = q,,; cos(m0) + p,,,; sin(m0). 3)

In Eq. (2), Jm(Awr) and I,,(Ar) are the Bessel function and the modified Bessel function of the first kind,
respectively. The admissible function U,,;(r) can be assumed as the eigenfunctions of the dry plate which
satisfies the boundary condition along its edge. Since the clamped boundary condition of the plate is assumed,

circular plate

rigid circular cylindrical vessel

Fig. 1. A circular plate partially in contact with a liquid.
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the displacement must be zero along the plate edge, that is, U, (r) = 0 at r = R, which yield
Umj(r) = Jm()qnjr) - Jm(iij)Im(imjr)/Im(iij)- (4)

The frequency parameter for the dry plate, 4,,, can be obtained by using Eq. (4) which satisfies another
geometric boundary condition, that is, a zero slope condition along the plate edge, or dU,,;(r)/dr =0 atr =R
as depicted in Ref. [16]:

Jm(;“ij)Im—H (iij) + Jmg1 (;“ij)Im(iij) =0. (5)

2.2. Formulation for a liquid motion

The liquid contained in a rigid cylindrical and horizontal vessel is partially filled as shown in Fig. 1. The
oscillatory liquid motion in the vessel can be described as the velocity potential satisfying the Laplace equation;

V2d(x,r,0,1) = 0. (6)

The separation of variables assumes that the velocity potential function @(x, r, 0, f) can be found as a function of
f(x) multiplied by a displacement potential function, ¢(r, #), and a simple harmonic time function, exp(iwt).

D(x,r,0,1) = iwd(r, 0, x) exp(io?) = iwe(r, 0)f (x) exp(iwt?). (7)

The first derivative of the displacement potential functions, ¢(r,0,x) and ¢(r,0), indicates the dynamic
displacement of the liquid with respect to the corresponding direction. Eq. (6) can be transformed into two
differential equations by Eq. (7).

QD(I", 0),rr + 1"71 @(ra H)ar + },,7290(},’ 9)799 _ f(x)axx

B __p
o(r.0) oy~ ®

When the gravity effect on the liquid motion is neglected, the liquid boundary condition at the free surface can be
approximated as the case for a half water level.

q)(rs 9)'0:71/2 = (p(r, 9)'9:—71/2 =0. (9)

2.3. Symmetric modes

The liquid motion with respect to 6§ =0 can be categorized into two cases, since the liquid-coupled
structural system is geometrically symmetric with respect to 8 = 0. One is the symmetric modes and the other
is the asymmetric ones. The displacement potential function can be separated into the radial function {(r) and
the azimuthal function y(0). The azimuthal displacement potential for the symmetric modes will become

W(0) = cos[(2n — )], n=1,2,3,...,N, (10)

in which n is the number of nodal diameters. The displacement potential of the liquid satisfies the
approximated liquid boundary condition of Eq. (9). Substituting Eq. (10) into Eq. (8) gives the solutions for
the radial and the axial directions.

zz,(r) - BnA\'Janl(ﬁnsr) + Cns Y2nfl(ﬁnsr)7 (l 1)

f(x) = Fys sinh(f,,x) + Gps cosh(f,,,x), (12)

where B,,;, C,, F,, and G, are the unknown coefficients which can be determined by the boundary conditions
and Y»,_1(p,sr) is the Bessel function of the second kind. As a rigid wall at x = L is assumed, the displacement
of the liquid in the axial direction should vanish at the rigid surface;

df ()

dx |,._;

= 0. (13)
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If we now let r—0, the Bessel function Y, ;(f,) tends to be infinite regardless of n. By the way, the
displacement potential for the liquid should be finite at r = 0 in order to have a physical meaning. Therefore,
the unknown coefficient C,, in Eq. (11) must vanish. Finally, the displacement potential satisfying Eq. (13) is
reduced to

cosh(B,,)

tanh(B,,L)| (14)

N oo
$(r,0,X) =D " F cos[(2n — D)0 an1(B,,1) [sinh(/fmx) -

n=1 s=1

Another liquid boundary condition along the radial surface of the rigid cylindrical vessel assures a zero liquid
displacement in the radial direction.

Oo(r, 0)
or

=0. (15)

r=R

Applying the boundary condition of Eq. (15) to Eq. (14) gives

J/Zn—l(ﬁmR) = 0. (16)

The apostrophe (') of Eq. (16) indicates the derivative with respect to r. The positive coefficient, f3,, can be
determined by Eq. (16) for every s and n.

The dynamic displacement of the liquid normal to the structure must coincide with that of the structure to
satisfy the continuity requirement, so the compatibility condition between the plate and the liquid becomes

op(r, 0
W(r,0) = 22000 (a7
ox =0
For the symmetric modes, substituting Eqs. (1)—(4) and (14) into Eq. (17) gives
N oo
D " BusFus cos[(2n — 1)01J20-1(B,,5r)
n=1 s=1
M K
m(} m/r)
g <O50) | Ggt) = TGy 500 (18)
z:o ]Z v v Y 111(; 171]R)

In a general case, the wet surface on the circular plate appears as a segment as shown in Fig. 2. When 0y = 7/2,
as a particular case, the wet surface forms a semi circle, so the theoretical formulation is available without any
approximations for the wet surface region. However, it is very touchy to treat the wet surface segment in the
cylindrical coordinates. Therefore, some approximations for the wet surface segment area are necessary for a
theoretical formulation for more general case. A wet segment area can be approximated as a bundle of annular
sectors so that the wet surface area can be dealt with in the polar coordinates as illustrated in Fig. 2. The radial
increment Ar can be written as the total number of the annular sectors, B.

Ar=(R—d)/B. (19)
When an edge angle 0; and a radius, r; of an arbitrary i-th annular sector, will be given

ri=R—(i—DAr, i=123,...,B, (20)

0; = cos ' {((R—d)/r;}. 1)

However, when 6 =n/2, the segmentation process for the integration is not necessary. Multi-
plying each term of Eq. (18) by rJa,—1(f,)cos[(2n — 1)0] and integrating it over [ry, R] and [0, 0]
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circular plate

| liguid

Fig. 2. Wet area segmentation of a circular plate partially in contact with a liquid.

B ritdr o0 0;
S [ S bbb dr [ co(@n - o) do
i=1 Vi s=1 —0;

i

]

B ri+dr M I (/'L _r)
_ PTGty = T G R) 22 |
S [N |t = iR G o

m=0 j=1 s=1

0;
X / cos(mB) cos{(2n — 1)6} d6.
—0;

(22)

From the above equation, a relationship between an unknown coefficient for the liquid (F,,;) and the unknown
coefficient for the plate (g,,) can be obtained.

where

qmj @nmjs

:q b
ﬁns‘—’ns

M K

Fs = Z
m=0 j=0
JoES a1 (B dr [, cos?{(2n — 1)0} d0 - for 0y =5

s=1

IS i (B P dr [ cos*{(2n— 1)0)dO for 0y 5,

ri
1 s=1

[x]

e

L

]m(imjr)
1, (AmiR)

x [, cos(mb) cos{(2n — 1)0}d0  for Oy = /2

(i LnGon?)
ri+Ar N o ImUamj?)
i=zl «fl’,‘ ; r |:Jm(}~l‘)7]r) Jm(/lij)Im(lm/-R)] JZn—l (ﬁnly}") dr

x [%, cos(mb)cos{(2n — 1)0}d0  for 0, # /2.

fOR i—.él r|:-]m(/lmjr) - Jm(;“ij) :|J2n—1(ﬁnsr) dr

@nmjs =

(23)

24)

(25)
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At last, the displacement potential for the symmetric modes will be expressed in terms of g,,,.

qm nms COSh(ﬁ X)
0 VI osf(2n — 1)0} 20 h(B,ex) — 2" 26
$(r.0.x) = 22};2 i eosl(2n = DO 211 (Bun) | sinh(B,) — ZEEpeTs (26)

2.4. Asymmetric modes

The displacement potential for the asymmetric modes should also be considered. The azimuthal
displacement potential for the asymmetric modes can be written as Eq. (27) to satisfy the approximate
liquid boundary condition of Eq. (9).

$(0) = sin(2nd), n=1,2,3,...,N. 27)

Similarly, we can obtain the displacement potential for the asymmetric modes.

N oo
¢(V, 0) X) = nz:; SZZI: Fg Sin(zne)JM(ﬁnsr) Sinh(ﬁnsx) - f;;ﬁgg:jz; :

As one applies the boundary condition of Eq. (17) to Eq. (28), the transcendental equation for the asymmetric
modes can be obtained

(28)

J2u(BusR) = 0. (29)

Therefore, the positive coefficient, f3,; for the asymmetric modes will also be determined by Eq. (29). By
substituting Egs. (1)—-(4) and (28) into Eq. (17), for the asymmetric modes, the compatibility condition
becomes

N oo
D> BusFus sin(2n0)J2,(B,,r) = ZZ P s1n(m9){ 1) = T R 7 (30)

n=1 s=1 m=1 j=

I, (/Lm/ r) }
I, (lmj R)

Multiplying each side of Eq. (30) by rJ2,(f,,r)sin(2n6) and integrating it over [R—d, R] and [—0,, 0] gives

B ri+Ar 00 )
Z/ Zﬁns nvr[-]Zn(ﬁnsr)] d”/g sin (21/10)(10

i=1

'+Ar N I (;L, ‘r)
jvm' —Jdm Am' ey 2 n
/’ Pt gpmj l: m(Zmi?) — I (Amj R) Im(iij)] Jou(B,sr) dr
X / sin(m0) sin(2n0) d0. an

i

Hence the unknown coefficient for the liquid motion, F,, can be written in terms of the another unknown
coefficient p,,; from Eq. (31).

M K pijnmjs
Fu=3.25 (32)
where

OR r[Jz,,([fmr)] dr [%, sin®(2n0)d0  for 0 = 7/2

Aps = B (33)
S 7 B, dr [ sin’Gn) 0 for w2
>
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Ln(Zami?)
m J2n(ﬁmr) dr

x [ sin(m0) sin(2n0)d0 for 0y = m/2

fOR r |:Jm(imj}’) - Jm(;“ij)

Qnmjs = B ] (34)
’ ri+Ar N ) Im(/hmjr)
izz:l fr[ r [Jr11(/1mj r) Jm(im]R)Im(/«Lij) JZn(ﬂnsV) dr

x [ sin(m0) sin(2n0)d0 for 0p#m/2.

Finally, the displacement potential for the asymmetric modes is rewritten in terms of the unknown coefficient
of the plate, p,;.

_ N M K pn‘Qnmjs . . COSh(ﬁmx)
b(r,0,x) = ;; ; ; ﬁ’n 1 S0 () {smh(/fnsx) (D))’ (35)

2.5. Rayleigh— Ritz method

The symmetric and the asymmetric vibration modes appear with respect to 0 = 0 for the wet condition.
A sufficiently large finite number of terms, M and K, must be considered to obtain a converged solution, and
a vector q of the unknown coefficients is introduced in order to perform numerical calculations:

a=1{q0 901 902 --- 9ok 910 911 912--- qux)}" for the symmetric modes with respect to 0 =0,  (36)

qa=1{p;, P1» P13 --- Pik Pa1 Po Prs --- Pux)' for the asymmetric modes with respect to @ = 0.  (37)

The reference kinetic energy of the vibrating plate for the symmetric and the asymmetric vibration modes can
be expressed as

h 2n R
Ty = % / qTerj W oqdrdf = ohq'Zq, (38)
0o Jo

where

ﬂRz{Jm(;Lm/'R)}zéuv form=20

Zuy = | nR? 39
(o) ”T{Jm(zij)}za,w for m>0 39
and J,, is the Kroneker delta. The subscripts u and v in Eq. (39) can be defined as Egs. (40) and (41).
u=Mm+j, v=Kp+k. (40,41)
The maximum potential energy of the vibrating plate is written approximately as
D /’{m' 201 & 2 2n R
Vi~ Dm) i) 1)2“1’) /0 /0 P W W dr d0 = Dq"Hq, (42)
where
2 RNy ROVS0 Form =0
H(u,v) = (43)

T
ﬁ(i,wR)“{Jm(iij)}zéw for m>0.
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The reference kinetic energy of the contained liquid can be calculated by an integration along the wet surface
of the plate.

z z i S0 o T W (. 0,0) dr dO for 0y = 7/2
Tp= (44)
2 S qpsz TN W (r,0,0)dr 0 for Oy #7/2.
p=0 k=0 i=1

For the symmetric modes, substituting Eqgs. (1)—(4), (26) into Eq. (44) gives

- Aokt
[ Po Z Z Z o | 7/12/2 fo cos(pO)r {J (Apit) = J, (ika) Lp(Zpic )}
n=1p=0 k=0 ppiR)
M K 2 cos{(2n — 1)0}J 2y 1(B,s7)
X By O s A 0 for 0g = /2
T* H;OJX(:); ﬁnv‘-‘f’lb‘ tanh(ﬁl’”L) q ’ ’ 0 / (45)
F= N M K FHAF Aokt
Pos~ 5o s qpkz I I A cos(pO)r {J ) = J (ika) Iy )}
2,21 p=0i=0 1,(ZpR)
M K 2 cos{(2n — 1)0}J2n—1(B,s7)
X — ns O s dr dO for Og#m/2.
| E 55 S anh(B,L) f e

By performing an integration of Eq. (45), we can obtain the reference kinetic energy as a matrix form.

* __Po @npks @nm/'s T
== q q = 1 = Pod G, (46)
2 ,;F = P",;); "”Zﬁmzm tanh(f,,L) "
where
GML npkr nmjs 47
) = ; Z zﬁm*—‘ns tdnh(l[))mL) ( )
Similarly, the reference kinetic energy of the liquid for the asymmetric vibration modes, will be written as
y gy q
* Po EnpksEnmjs . T
TF_?ZZ qpkzzqwz:ﬂ A,s tanh(f L)—pgq Gq. (48)
n=1 p=1 k=1 m=1 j= ns<ons ns
where
G _ ) npks E nmjs ) 49
@ = Z] nzzﬁmAm tanh(f,,L) )

The relationship between the reference total kinetic energy multiplied by its square circular frequency and
the maximum potential energy is used in order to calculate the wet natural frequencies. Minimizing the
Rayleigh quotient with respect to the unknown parameters q, the eigenvalue equation is obtained.

DHq — o {phZ + p,G}q = {0}. (50)

Determinant of the left side in Eq. (50) must be zero to obtain a non-trivial solution, and the natural frequency
o of the wet plate can be calculated.

3. Numerical example and discussion
3.1. Theoretical and finite element model

A numerical example test was solved by using commercial software, Mathcad (release 14). The eigenvalues
of Eq. (50) were calculated to demonstrate the accuracy of the Rayleigh—Ritz method for a circular plate
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partially in contact with a liquid. The derived frequency equation involves an infinite and finite series of
algebraic terms. In the theoretical calculation, the expansion term s was set at 50, the expanding terms M and
K for the admissible functions were set at 7, and the expanding term for the liquid motion N was set at 11 to
obtain a converged solution. It is obvious that the accuracy of the results depends on the size of the truncated
matrices and the number of series expanding terms. The lowest 10 natural frequencies of the half liquid-
contacting circular plate were given in Table 1 as a function of the number of considered admissible functions.
It was observed that the only seven terms of the admissible functions could give the converged results within
the lowest 10 natural frequencies. The number of the annular sectors for the segmentation of the liquid
contacting area was B = 20 for the 25 percent water level.

In order to check on the validity of the theory, a circular plate partially in contact with water was examined
by a finite element analysis using a commercial computer code, ANSYS (release 10.0). Three dimensional finite
element models for the 50 and 25 percent water levels were constructed as shown in Fig. 3.

It was assumed that the circular plate was made of aluminum with a radius of 240 mm and a thickness of
3mm. The inner radius of the cylindrical vessel was identical to that of the plate. The liquid thickness was
80 mm for the 50 percent water level and the liquid thickness was 200 mm for the 25 percent water level. The
physical properties of the plate and the liquid used in the theoretical calculation and the finite element analysis

Table 1
Convergence test for natural frequencies of a circular plate with a half wet surface (L = 80 mm).

Serial mode Natural frequency (Hz)
j=m=3 j=m=4 j=m=>5 j=m=6 j=m=17
1 45.57 45.56 45.55 45.55 45.55
2 118.31 118.26 118.22 118.27 118.24
3 153.51 152.05 152.02 151.98 151.98
4 256.02 229.30 226.48 226.39 226.26
5 284.58 276.57 276.30 276.67 276.37
6 - 281.17 280.78 280.74 280.73
7 414.54 382.79 377.10 377.25 377.13
8 - - 440.03 421.92 421.08
9 - 445.13 443.71 443.61 443.51
10 - - - 498.20 497.58
(a)
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Fig. 3. Three-dimensional finite element models of a liquid-contacting circular plate with a partial wet surface (R = 240 mm): (a) 50%
water level (L = 80mm) and (b) 25% water level (L = 200mm).
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were as follows: Young’s modulus = 69.0 GPa, Poisson’s ratio = 0.3, plate mass density = 2700 kg/m*, and
liquid density = 1000 kg/m®. The viscosity of the liquid was neglected in both the theoretical calculation and
the finite element analysis.

Finite element analysis using ANSYS was performed to obtain the natural frequencies of the circular plate
partially in contact with water. For the finite element analysis, a three dimensional model was constructed with
liquid elements (FLUIDS0) and elastic shell elements (SHELL63). The liquid region was divided into a
number of liquid elements and the plate region was also meshed with shell elements. The liquid movement at
r = R, namely along the rigid vessel wall, was restricted to the radial direction only, on the other hand, no
restrictions were imposed on the other directions. The liquid at the top surface could move freely in any
direction. Hence, a sloshing at the top surface of the liquid was allowed. The liquid movement at x = L,
namely at the rigid side wall, was also restricted to the axial direction. The axial displacement of the liquid
nodes adjacent to the surface of the wetted circular plate coincided with those of the plate so that the finite
element model could simulate Eq. (17). The clamped circular plate was divided into 2884 quadrilateral elastic
shell elements, and the liquid region of the finite element model consisted of 40 376 hexahedral liquid elements,
for the 50 percent water level, and the model for the 25 percent water level was composed of 4640 elastic shell
elements and 28480 liquid elements as illustrated in Fig. 3. A clamped boundary condition along the plate edge
was applied in the finite element model. The natural frequencies of 50 modes were obtained by the Block
Lanczos-iteration extraction technique in order to extract the eigenvalues and eigenvectors in the finite
element analysis.

Table 2
Natural frequencies of a circular plate with a half wet surface (L = 80 mm).

Serial mode Mode shape category Natural frequency (Hz) Discrepancy (%)
Theory FEM

1 Symmetric 45.6 45.5 0.22
2 Asymmetric 118.2 117.9 0.25
3 Symmetric 151.9 151.4 0.33
4 Symmetric 226.3 225.7 0.26
5 Asymmetric 276.1 274.4 0.62
6 Symmetric 280.7 280.6 0.04
7 Asymmetric 376.8 376.0 0.21
8 Symmetric 421.1 418.8 0.55
9 Asymmetric 443.4 443.0 0.09
10 Symmetric 497.6 495.9 0.34
Table 3

Natural frequencies of a circular plate with a liquid depth d = R/2 (25% liquid level, L = 200 mm).

Serial mode Mode shape category Natural frequency (Hz) Discrepancy (%)
Theory FEM
1 Symmetric 119.1 120.5 —1.16
2 Symmetric 206.4 206.1 0.15
3 Asymmetric 256.2 257.6 0.54
4 Symmetric 372.1 353.1 5.38
5 Asymmetric 357.3 358.1 —-0.22
6 Symmetric 446.3 468.6 —4.75
7 Asymmetric 5324 524.3 1.54
8 Symmetric 523.3 534.6 —2.11
9 Symmetric 629.4 633.6 —0.66
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3.2. Theoretical and finite element results

The wet natural frequencies of the plate are listed in Table 1 within the 10th serial mode number. It was
found that the theoretical natural frequencies agreed with the finite element results to within a 1 percent
discrepancy for the 50 percent water level and within +6 percent for the 25 percent water level as listed in
Tables 2 and 3, respectively. These results show that the suggested theoretical method was verified for
engineering applications. Especially, the theoretical results for the 50 percent water level could accurately
predict the finite element analysis results. However, some discrepancies were observed between the theoretical

(4th mode)

(10th mode) (11th mode) (12th mode)

Fig. 4. Typical mode shapes of the circular plate with a half wet surface (finite element analysis result, L = 80 mm).
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results and the finite element analysis results. These discrepancies seem to be caused by the approximation of
the boundary condition at the liquid free surface, a lack of an orthogonality in Egs. (22) and (31), and the
segmentation in the wet area.

The fundamental frequency of the dry plate was 129.6 Hz, but that of the wet plate with an 80 mm water
thickness was 45.5 Hz. Therefore, the frequency reduction due to the added mass effect was about 65 percent.
This reduction in the frequency depends on the liquid thickness, the liquid depth and the vibration modes. As
the wet mode shapes are basically different from the dry ones, that is to say, the wet modes are so complicated
that the wet modes cannot be defined with the number of nodal circles and the nodal diameters, it is very
difficult for the wet modes to become homologous to the dry modes one by one. So, it seems to be meaningless
that the natural frequency of the wet modes is normalized with respect to that of the dry modes, or the non-
dimensional added virtual mass increment (NAVMI) factors are introduced in this problem.

3.3. Mode shapes

The mode shapes of the plate in contact with water are illustrated in Fig. 4. All the mode shapes can be
categorized as symmetric modes and asymmetric modes with respect to 6 = 0. In Fig. 4, the first mode, third
mode, fourth mode, sixth mode, ... etc. are the symmetric modes. On the contrary, the others such as the
second mode, fifth mode, seventh mode, ninth mode, ... etc. correspond to the asymmetric modes. All the wet
mode shapes are distorted from the original dry mode shapes. For example, the second and third modes
originate from the dry mode with one nodal line and a zero nodal circle. These two modes will be identical to
the mode with one nodal diameter and a zero nodal circle, if the plate is in the dry condition. However, as the
concentrated liquid mass in the lower part of the plate causes a different added mass effect on each mode, it
produces two independent modes. Similar phenomenon happens at the fourth and the sixth modes. The fifth
mode is equivalent to the dry mode with two nodal diameters and a zero nodal circle, and the eighth mode
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Fig. 5. Effect of water thickness on natural frequencies of the circular plate in contact with water (—BM—, first mode; — @ —, second
mode; —A—, third mode; —V¥—, fourth mode).
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stem from the dry mode with three nodal diameters and a zero nodal circle. The fourth and fifth modes in
Fig. 4 originate from the dry mode shape with two nodal diameters and a zero nodal circle. The dry mode is
bifurcated into two different modes due to the unevenly distributed liquid mass along the plate. Additionally
the mode shapes are distorted from the original dry mode which is familiar to us. The ninth mode in Fig. 4 also
demonstrates another distorted mode shape which stems from the dry mode shape with one nodal diameter
and one nodal circle. It was also observed that the liquid thickness does not significantly affect the mode
shapes even though the natural frequencies are increased with the liquid thickness.

3.4. Effects of the liquid thickness and the liquid depth

It is well known that the wet natural frequencies of a structure in contact with water are sensitive to the
liquid thickness when the liquid thickness is particularly small. The effect of the liquid thickness between the
circular plate and the rigid side wall on the natural frequencies is plotted in Fig. 5 for the half-liquid contacting
case. A narrow gap tends to reduce the wet natural frequencies for all the modes. When the liquid thickness
ratio (L/R) is greater than approximately 1.0, the natural frequencies are converged to the values of the infinite
liquid thickness case as shown in Fig. 5. For the higher modes, it seems that the natural frequencies of the wet
plate are converged to the infinite liquid case when the liquid thickness ratio is greater than approximately 0.5.

Figs. 6 and 7 show the effect of the liquid depth, d on the normalized natural frequencies. The wet natural
frequencies were normalized with respect to the corresponding dry natural frequencies. The figures show that
the natural frequencies decrease with the water level. The natural frequencies of the fundamental, second and
third modes drastically decrease along the 20-60 percent liquid level, since the clamped plate dynamic
deformation is maximized in the range of the liquid level. The second and third modes are an identical mode in
the dry condition and the fully liquid contacting condition (100 percent liquid level) as shown in Fig. 6.
However, the symmetric mode with respect to 6 = 0 has a transition plateau owing to a stagnation of the
hydrodynamic mass increment induced by the coincidence of the nodal line and the water level. Fig. 7

Normalized natural frequency

0 20 40 60 80 100
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Fig. 6. Effect of water depth on natural frequencies of the circular plate (—M—, first mode; —@®—, second mode; —A—, third mode).
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Fig. 7. Effect of the liquid depth on natural frequencies of the circular plate (— B—, fourth mode; — @ —, fifth mode).

illustrates a transition of the mode shape with a zero nodal circle and two nodal diameters from a regular dry
mode shape to the bifurcated and distorted mode shapes.

4. Conclusions

A theoretical method to estimate the natural frequencies of a circular plate partially in contact with a liquid
was developed by the Rayleigh—Ritz method. It was verified that the theoretical approach based on an ideal
liquid assumption and a half liquid-contacting clamped plate can predict the coupled natural frequencies well.
Two types of vibration modes, namely, the symmetric and the asymmetric modes were observed, which are
distorted from the original dry mode shapes. It was evident that the wet vibration mode shapes were not
significantly changed regardless of the liquid thickness even though the natural frequencies were increased
with the liquid thickness. It was also observed that the wet natural frequencies of the plate increase with the
liquid thickness and they decrease with the liquid depth. A dry mode shape is bifurcated into a symmetric
shape and an asymmetric shape according to an increase of the water depth, and eventually it returns to its
original dry shape for the fully liquid-filled case.
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